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Abstract — We review and evaluate the design and operation of twenty-seven known autonomous
benthic chamber and profiling lander instruments. We have made a detailed comparison of the
different existing lander designs and discuss the relative strengths and weaknesses of each. Every
aspect of a lander deployment, from preparation and launch to recovery and sample treatment is
presented and compared. It is our intention that this publication will make it easier for future lander
builders to choose a design suitable for their needs and to avoid unnecessary mistakes.
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1. INTRODUCTION

The sea tloor plays an important role in the regulation of the chemical composition of water
masses in the oceans. Processes in sediments are important links or sinks in the biogeochemical
cycles of elements in aquatic systems. In addition the seabed is the habitat for a great variety of
higher organisms, and as such constitutes a distinct stratum for benthic life and consequently for
numerous biological processes. The conventional approach to study these geochemical and
biological processes is to collect a sediment sample from the sea-bed bring it up to the surface and
there make observations and carry out experiments on it either on-board ship or in the laboratory.
Methods that have been used to evaluate biogeochemical activity in sediments and at the sediment-
water interface include direct measurements of benthic fluxes during incubations of sediment
together with overlying water, and measurements of solute distributions in and above sediments.
The latter have been achieved both in-situ and ex-situ either directly using of microelectrodes or
by analyses of porewaters extracted from the sediment. Gradients solutes in porewaters have often
been used to calculate solute fluxes within sediments and across the sediment-water interface (for
recent reviews of these topics see e.g. SANTSCHI, HOHENER, BENOIT and BUCHHOLTZ-TEN BRINK
(1990) and DE LANGE, CRANSTON, HYDES and BOUST (1992).

Accurate data are difficult if not impossible to obtain from the deep-sea, because artefacts are
induced when the samples are subjected to large changes in hydrostatic pressure and (often)
temperature as they are brought up to the surface. Itis therefore preferable to carry outexperiments
and measurements directly at the sea floor (in-situ). Even when working at quite shallow depths
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in shelf seas there is general agreement that it is preferable, if possible, to carry out experiments
in-situ, to avoid artefacts caused by excessive disturbance. Such studies can be carried out using
benthic landers or other instruments deployed on the sea-floor. When designing and using these
instruments an important goal is to minimise the disturbance they cause to the sea-bed both during
landing and operation. An additional benefit of using landers for deep sea-floor studies is that, when
they work properly, they are less demanding of ship time (and thus of money) than conventional
sediment coring techniques. Once the lander has been deployed the ship is free to undertake other
operations after, until it is time for recovery.

When designing a lander there are numerous points that need to be considered if it is to be
successfulin achieving its designated tasks at the sea-floor. These include the methods of launching
and recovery, the choice of construction materials for various components, the design, descent and
ascent speeds, the landing technique, selection of the techniques for sampling, observation and
measurement, and the choice of electronics and energy requirements.

Some brief reviews of benthic chambers/microcosms (ZEITZSCHEL and DAVIS, 1978; LALLI,
1990) and chamber lander techniques (BERELSON, HAMMOND, SMITH, JAHNKE, DEVOL, HINGA,
ROWE and SAYLES, 1987; JAHNKE AND CHRISTIANSEN, 1989) have already been published. These
comparisons presented successful results for some projects, whereas to our knowledge no reports
have previously been published on technical problems encountered when designing and deploying
autonomous devices. Moreover since these earlier reviews were published, several new lander
systems have been constructed (or are under construction) and the concept of profiling landers is
new. In this paper we will describe the various benthic flux chamber and pore water profiling lander
instruments that have been constructed to date and discuss their relative strengths and weaknesses.

2. HISTORY OF CHAMBER INCUBATING AND PROFILING SEA-FLOOR LANDERS

2.1. Different types of instruments for sea-floor investigations

"Lander" is a general term for any autonomous, unmanned oceanographic research vehicle that
free-falls to the sea-floor unattached to any cable, and then operates independently on the sea-floor.
Attheend of the deployment, ballast weights are releasedeither by a pre-programmed timing device
or on an acoustic command transmitted from the surface. The lander then floats back up to the
surface by virtue of its positive buoyancy. Other terms that have been used for such devises are
“Free-fall vehicle” and “Pop-up vehicle”. There are many examples which can be cited of such
instruments which have been used for a wide variety of applications. Landers have been used to
study nepheloid layers (e.g. VANGRIESHEM and KHRIPOUNOFF, 1990), for fine-scale, high-
resolution sampling of water in the benthic boundary layer (e.g. THOMSEN, GRAF, MARTENS and
STEEN, 1994), for long term measurements of near bottom currents, tides (e.g. SPENCER, VODEN
and VASSIE, 1994), or microseismic activity (e.g. KIRK, LANGFORD and WHITMARSH, 1982). Other
applications are autonomous instruments for tracking deep-sea fishes and estimating their
abundances (e.g. ARMSTRONG, BAGLEY and PRIEDE, 1992), and time-lapse photography of the
sea-bed activity (e.g. ISAACS and SCHWARTZLOZE, 1975; BILLETT, LAMPITT, RICE and MANTOURA,
1983; RICE, THURSTON and BETT, 1994). Aninteresting, although non-autonomous technique, has
been to place a large video-controlled chamber over the top of deep-sea vents from a conventional
surface research vessel (LINKE, SUESS, TORRES, MARTENS, RUGH, ZIEBIS and KULM, 1994). This
chamberisolates, collects and measures fluid flow from cold seeps, and eliminates the need for (and
costs of) deployment by submersible. Another autonomous lander for geophysical studies of the
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sea-floor using mainly a magnetic recorder and geophones has been developed by E. A. KONTAR
(Shirshov Inst. of Oceanology, Moscow, pers. comm.).

During the “European Benthic Lander Research and Technology Workshop” (Bremen,
November 1993) the need was identified to be able to conduct longer-term (up to one year) lander
deployments in an area. However, if such an instrument were to be left continuously throughout
the deployment on exactly the same site, it will, by its very presence, interfere and alter the natural
conditions; so the instrument musteither move or be moved. This can either be solved by recovering
and redeploying one or several landers, or by the lander having an autonomous ability to change
its location. Such an autonomously mobile instrument (“bottom crawler”) is under development
at Scripps Institution of Oceanography by K.L. SMITH.

The instruments mentioned above are considered to be outside the scope of this paper and will
not be discussed further. This discussion will focus on landers used as platforms which either
support benthic chambers or profiling instruments. A chamber lander isolates an area of the sea-
floor and its overlying water in one or more chambers in order to measure the rates of
biogeochemical processes. A profiling lander is equipped with probes thatare inserted into the sea-
floor sediment to measure profiles of water properties above, at and in the pore waters beneath the
sediment-water interface.

2.2. History and presentation of chamber incubating instruments

The first in-situ experiments on the sea-bed were carried out by scuba divers. Fluxes into or out
of sediments have been obtained for a number of substances, by deploying a chamber on the sea
floor isolating an area of sediment surface and the overlying water, and then drawing discrete
samples at specific times intervals for analysis in the laboratory (e.g. HALLBERG, BAGANDER,
ENGVALL and SHIPPEL, 1972; NIXON, OVIATT and HALE, 1976; HAMMOND, SIMPSON and
MATHIEU, 1977; BALZER, 1978; CALLENDER and HAMMOND, 1982; HALL, 1984; RUTGERS VAN
DER LOEFF, ANDERSON, HALL, IVERFELDT, JOSEFSON, SUNDBY and WESTERLUND, 1984). In the
latter two reports constant oxygen concentration were maintained in the overlying water.
Extending the use of this type of chamber to depths beyond the range of scuba divers has been
possible either by using a wire, a mooring, or a submersible (e.g. PAMATMAT and FENTON, 1968;
PAMATMAT and BANSE, 1969; SMITH and TEAL, 1973; ALLER, HALL and RUDE, 1987).

However, using a chamber attached to a surface buoy makes it sensitive to the weather and sea
conditions at the surface. Another problem is that a moored lander is vulnerable to fishing activity.
The fate of several such moorings has been to be trawled away. The ideal approach would seem
tobe todeploy landers from submersibles, However, since number of scientific manned submersibles
in the world has always been, and is likely to remain limited, for most experiments the use of
submersibles for such deployments is impractical noris it generally affordable. So the development
of autonomous free-vehicle landers is one obvious solution to solving these practical difficulties.

The first steps towards development of successful autonomous vehicles were taken in the
1970’s by the construction of the FVR (SMITH, CLIFFORD, ELIASON, WALDEN, ROWE and TEAL,
1976), the MANOP Lander (WEISS, KIRSTEN and ACKERMAN, 1977; KIRSTEN and JAHNKE, 1985)
and the FVGR-1 (SMITH, 1978; SMITH, WHITE and LAVER, 1979). The HINGA chamber lander
(HINGA, SIEBURTH and HEATH, 1979) was designed to be deployed at the bottom of a mooring.
Based on the combined experience gained with these early devices, a number of other landers were
developed during the 1980’s. The DEVOL lander (DEVOL, 1987; DEVOL and CHRISTENSEN, 1993)
is similar to the FVR, and the JHF lander (PFANNKUCHE, 1992; 1993) resembles the FVGR-1. The
USC landers (BERELSON and HAMMOND, 1986) were developed as a result of the need to have a
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device capable of making multiple flux incubations with a short turn-round, and of being deployed
ina wide range of environments. The development of the BECI (JAHNKE and CHRISTIANSEN, 1989)
was based on the philosophy of keeping the concept as simple as possible, in reaction to the adverse
experiences gained during the development of the highly complex MANOP lander. There was now
third generation of landers which involved various new developments including FVGR-2 (based
on FVR and FVGR-1) (SMITH, 1987), and the GOMEX lander (ROWE, BOLAND, PHOEL,
ANDERSON and BISCAYE, 1995) which was designed not only to estimate fluxes but also to attract
and capture benthic organisms.

Another further generation of benthic chamber landers has been designed during the 1990’s,
some of which are still under construction. The most complex of these is ROLAPD (SAYLES and
DICKINSON, 1991; DICKINSON, WAYNE and SAYLES, 1992), which has the highest capacity for
replicating sampling and measurement tasks during a single deployment. It is also the only lander
capable of deployments of up to 50 days. BOLAS (Table 1) is equipped with new systems for
sampling water and sediment, and is also equipped with a camera to photograph benthic organisms
inside the chambers. The design of ELINOR (GLUD, GUNDERSEN, JZAERGENSEN, REVSBECH and
HUETTEL, 1995) was based on BECI and equipped with a novel type of microelectrode probe. ITO
is another chamber lander based on the BECI concept and has been constructed in Japan. RAP 2,
a further development of RAP 1, is the only lander equipped with a parachute to ensure a gentle
landing. Two chamberlanders of similar construction with “multiple corer type” sediment sampling
systems are the BANYULS and the GOTEBORG landers (DE BOVEE, TENGBERG, HALL,
BARBOUTY, LE BELLER, BRILLOIT and LANDEN, 1995). The IDRONAUT/CISE chamber (BARBANTI,
BONIFORTI, CICERI, MARTINOTTI and VIRTANEN, 1992; CICERI, MARAN, MARTINOTTI and
QUEIRAZZA, 1992) has a special system to maintain oxygen and pH levels constant inside the
chamber during the incubations. The same system for maintaining oxygen concentrations is used
on the Benthic Flux Sampling Device (BFSD) developed by CHADWICK, STANLEY and LIEBERMAN
(1993). The EAWAG chamber instrument (WEHRLI, DINKEL and URBAN, 1994), which is not
autonomous, has, like the IDRONAUT/CISE chamber, been successfully operated in freshwater.
The BIO-C-FLUX and BIOSTABLE landers (Table 1) became operational during 1994, the latter
being equipped with an advanced video-system.

2.3. History and presentation of profiling landers

An alternative approach to quantifying benthic exchange processes in-situ is to use sediment
profiling instruments utilising mini- or microelectrodes to make precision measurements of
chemical profiles and then to interpret the results with mathematical models. REIMERS (1987)
developed the first autonomous instrument of this type and inspired the development of several
similar instruments like the UW PROFILER (ARCHER, EMERSON and SMITH, 1989a; ARCHER,
EMERSON and REIMERS, 1989b; HALES, EMERSON and ARCHER, 1994), PROFILUREN
(GUNDERSEN and JGRGENSEN, 1990; GUNDERSEN and JORGENSEN, 1991; GUNDERSEN, JZRGENSEN,
LARSEN and JANNASCH, 1992) and TROL (EPPING and HELDER, 1995). A third generation of these
instruments includes BOTTY and the GEOMAR profiler (Table 1) which were inspired by TROL.
Reimers has continued to develop two further profiling landers (REIMERS, JAHNKE and MCCORKLE,
1992; CAI and REIMERS, 1993; REIMERS, unpublished results). These, together with the UW
profiler which has fibre optical sensors, are the only instruments presently capable of measuring
in-situ pCO, profiles in sediments. The SAHAMI profiler (Table 1) is a low-cost profiling
instrument, specially developed to measure oxygen uptake by polluted sediments, which, although
it is a non-autonomous instrument, is included in this paper.
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262 A. TENGBERG et al.

3. MATERIAL CHOICES FOR LANDER FRAMES AND PREPARATION BEFORE
LAUNCHING

An autonomous benthic lander must have a basic support frame on which is mounted the
instruments, the ballast weights, the release mechanism and the buoyancy. The main objective when
constructing this frame is to keep its weight as low as possible without compromising its mechanical
strength. Keeping the weight low not only makes the whole instrument easier to handle, but also
minimises the need for expensive buoyancy material (cf. Ascension and recovery). While deployed
the lander and its frame are exposed to relatively trivial static stresses, so the main risks of
mechanical damage occur during launch and recovery.

For ease of transport and storage, particularly in containers, most constructors have designed
outer frames which are readily dismantled. The material most commonly used is aluminium (Table
2), which has the advantages of being relatively inexpensive and light (p,, = 2600 - 2850 kg/m*
depending on the alloy chosen). However, aluminium is not as strong as some other materials, for
example stainless steel, and many ships do not carry the special welding equipment required for
repairs.

Alternative materials for frames are stainless steel, titanium and composite materials such as
glass fibre reinforced with aramid fibre (commonly called Kevlar©) and with epoxy resin as binding
material.

Stainless steel (p,,,;,... = 7950 kg/m?) is about three times denser than aluminium and at least
four times denser than the composite materials (P, . = 1500 kg/m?). Titanium has a density of
P = 4500 kg/m?®, The greater weight of stainless steel is compensated for by its better
mechanical properties. It has an E-module (the elasticity module E is commonly used in mechanics
as a measure of strength, e.g. bending strength) which is almost three times higher than for
aluminium and about one and a half time higher than for composite materials; E_, . =210 GPa
compared to E, =70 GPa, E_ . =120-140 GPaandE,, =114 - 118 GPa.

The highest costs incurred while constructing a lander are the labour costs. But if materials for
the frame have to be chosen on the basis of cost, costs of aluminium and stainless steel will be similar,
whereas titanium and composite materials will be roughly 20 times more expensive (at 1994 prices).
The cost of composite material depends on the quantities of aramid fibres used; using more aramid
fibres increases both the mechanical strength and the costs.

If aluminium or stainless steel are to be used the choices of alloys to be used has to be governed
by which are the most resistant to corrosion in sea-water. The best choices are, for stainless steel
AA 316 (US standard norm), and for aluminium AA 5052, AA 5754, AA 5083, AA 6082, AA 6063
and AA 6061 (US standard norm). So far composites have not been used, in spite of their lower
weight and better mechanical properties, because their behaviour under high pressure is poorly
known, and the special equipment (oven and vacuum pump) required for fabrication and repair.

Titanium isrelatively light and strong, butis difficult to weld and to polish. Good quality titanium
welding requires special precautions, and industrial welding is undertaken in an oxygen frée
environment, such as an argon filled tent, using specialist welding equipment. Polishing titanium
has to be undertaken with considerable caution because titanium dust can ignite spontaneously.
There are many different qualities of titanium to choose from but those which are brittle should be
avoided.

Galvanised steel is a less favoured alternative although it has the similar mechanical and physical
properties to stainless steel and is about half the price. It has several disadvantages. Careful attention
has to be given to the shape of the frame since “closed” sections (e.g. cylindrical tubes) are difficult
to galvanise internally leaving them vulnerable to corrosion, and any disruption to the protective
layer through modifications or damage to the rig will set off corrosion immediately. Whatever
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material is chosen most constructors recommend the use of sacrificial anodes (made of Zn or Mg)
to reduce the corrosion problems.

Regardless of the metal(s) used in constructing the frame, considerable care has to be taken if
any combination of differentmetals is used (e.g. stainless steel bolts in an aluminium frame, titanium
pressure house in a stainless steel frame). Failure to insulate the metals from one another, by coating
or painting, will result in the rapid corrosion of the metal with the lower reduction potential.

4. DESCENT AND LANDING

4.1. Descent

Currents within the oceanic water column will affect a lander during its descent and ascent, and
may carry it away from the desired position (HENDRICKS and RODENBUSH, 1981; NABATOV and
RAZZHIVIN, 1986). The faster a lander sinks or rises the less it will drift out of position, rates of
ca0.5- 1 ms ! are acceptable, but this still means that a lander will take 1-2 hours to traverse a water
column 3,600m deep. Another reason to maximise the descent and ascentrates is to save ship time,
by minimising the waiting time after launching and weight release, and if a lander takes too long
atime to ascend, there may be problems relocating it at the surface. However, if the lander’s descent
rate is too fast, it is liable to cause excessive disturbance to the sediment-water interface at the
measurement site. Also it will be driven deeper into the sediment and so run the risk of the lander
becoming irretrievably stuck in the bottom. Some landers have become trapped temporarily in
sticky bottom sediments (e.g. TROL and BOLAS during a Mediterranean cruise in 1990). Pull out
forces can be increased by adding more buoyancy but this incurs penalties of increased cost and
the need to use more ballast to attain the same descent speed.

A lander sinking through water is affected by the gravitation, the Archimedes principle and the
drag force (MORTENSEN and LANGE, 1976). The drag results not only from the friction between
the water and the lander frame but also on the water moving with the lander; this water is called
added mass (BIRD and MOCKROS, 1986).

The use of classical hydrodynamic formulae together with an acceleration thatapproaches zero,
givesthe following approximate expression for the speed (V. ) of afreefalling irregular body, such
as a lander, in water.

limit-

2m g
v, o= f - (D
pliquid CD S
The gravity (g=9.81 ms?) as well as the sea-water density (p = 1026 kgm- at surface) are considered
to be constant in Eqn 1. Nevertheless, sea water density increases with 1.5 - 2 % from the surface
to a depth of 6,000m as a result of compression. SayLEs and DickiNsoN (1991) estimated that this
increases the positive buoyancy of their lander by about 30kg at 4,000 m depth, whereas KIRSTEN
and JaHNKE (1985) concluded that the high hydrostatic pressure compressed the volumes of
components of their lander sufficiently to reduce its overall buoyancy. Other users of lander have
observed little change in descent or ascent rates with depth, suggesting the pressure effects cancel
each other out so that buoyancy changes with depth are negligible.

As shown by Eq.1, lander speed is dependent on the negative (or positive when ascending)
buoyancy (m =m,, -V, where V is the lander volume) and the C,S. The C,S can be split

water
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266 A, TENGBERG et al.

into a projected area term (S (m2)) and a drag coefficient (Cp, (unitless)) that depends on the
Reynolds number and the structure’s form. C;, is different depending on whether the lander is
sinking or ascending. For practical reasons and the complex form of alander, itis usually sufficient
to consider the C,-value as a constant that may be combined with S (HENDRICKS and RODENBUSH,
1981). The role played by the area and the form of a lander in determining sinking and ascent rates
is thus represented in the C,S term.

The descentspeeds of the various landers range between 25-60 m min™! depending on their form,
surface area (C,S) and weight in water (see Table 2 and 3).

4.2. Ballast weights

A wide range of materials are used for the ballast weights including concrete, scrap iron, cast
iron and lead. Lead has the highest density, but should be avoided because of its potential
environmental impact may be serious. Scrap iron (e.g. railway waste) is cheap and easy to obtain
but is awkward to use because of its irregular shape. Iron blocks cast into conical shapes are
expensive but serve to minimise disturbance upon landing (e.g. BOLAS). Concrete ballast is best
avoided, because of its density is relatively low, and its behaviour in the deep-sea environment is
poorly known.

Ballast weights can be fixed underneath the frame and used as foot pads (Table 3). Since most
of the sediment suction is applied to the foot pads, dropping them off allows the rest of the lander
frame to escape easily to begin the ascent back to the surface. While this method of attaching ballast
weights, decreases the risk of a lander becoming stuck in the sediment, is not a complete guarantee
of success (c.f. Ascension and recovery). One minor inconvenience of this method is that it
complicates the deck handling, since either a special rack is needed, or the lander has to be lifted
off the deck to attach the weights.

Another option is to use permanently fixed landing pads and to secure the ballast weights to the
frame above the sediment. This is liable to increase the suction forces that must be overcome when
the weights are released.

4.3. Landing

Most landers work successfully by simply crash-landing on to the bottom at a modest speed,
as long as the foot pads are large enough to prevent too deep a penetration of the frame in the
sediment. Holes in the foot pads can help to reduce the suction on lift off.

Some landing techniques have been devised to minimise the impact both to reduce disturbance
of experimental site and the risks of the lander becoming irretrievably stuck. The ROLAI?D lander
has a negative buoyancy of 67 kg when launched, but by the time it reaches a depth of 4000 m its
buoyancy decreases to about 37 kg as a result of the increased density of the sea water. There is
a52kg weight suspended 10 m beneath the lander, and when this weight hits the bottom the lander
buoyancy becomes positive (15 kg) so that it stops sinking and remains suspended above the
bottom. On acoustic command from the surface, the lander is then pulled onto the bottom by a winch
ofaspeedat3m min-!. Contact with the bottom is sensed, either by a light sensor or a contact switch
on the winch, which trigger the release of a package of glass floats with 145 kg positive buoyancy.
The lander then has a negative buoyancy of 130 kg, sufficient to push the motor-driven chambers
into the sediment. After about two days a corrodable Mg-link releases the hang weight (cf. Ascent
and surface spotting). This system not only requires accurate buoyancy calculations, but also some
complex and expensive supplementary equipment such as a winch, light sensors and an extra
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acoustic release, which all have to be pressure compensated. The release of glass spheres requires
extra ship time and manoeuvring for their recovery, since their loss will induce considerable extra
cost.

Another different landing technique used by the BANYULS and GOTEBORG landers consists
of the descent weights being suspended on ropes 0.6 m under the lander frame. When these weights
hit the bottom, the lander is positively buoyant, stops about 0.1 m from the bottom (filmed during
scuba diving), and then stays suspended above the bottom. No feet are required on these landers
because the frame never touches the bottom. This technique eliminates the risk of the frame getting
stuck in the sediment. USC lander has lead weights that hang just below the frame and prevent the
frame from over-penetrating soft sediment. Since landers like the BANYULS and GOTEBORG are
designed never to hit the bottom, bow wave effects on the sediment surface will be less than for
more classical designs. The critical factor with this approach is getting the right balance between
the negative buoyancy of the ballast weights and the inner chamber tray (damped) to permit a good
penetration of the chambers into the sediment. The sensitivity of this lander design to strong bottom
currents is yet to be investigated.

Combining a fast descent with a gentle landing can be achieved either by using a parachute
drogue or by releasing a ballast weight before reaching the bottom. The only lander to use a
parachute drag so faris RAP-2. The release of a plasticised nylon drogue is triggered hydrostatically
at a pressure around 110 bar and is buoyed up above the instrument on a short tether fitted with
a foam float. It decelerates the descent rate from 60m min™! to 30m min.

Theoretically, dropping of a ballast weight prior to landing should be just as simple, using the
same type of hydrostatic release as used with the parachute drogue. However, this idea has not
yet been used on any lander. The hydrostatic releases have a rather limited precision of about 10%
so triggering depths tend to be imprecise when working in deep water. The release of the weight
mustnotreduce the negative buoyancy so much that itis no longer adequate to push the chamber(s)
or electrode(s) into the sediment.

Pressure releases are commercially available for about 500 US$ (according to 1994 price level).

5. IMPLANTATION IN SEDIMENT OF CHAMBER AND PROFILING INSTRUMENTS

A stable landing in an upright position is a crucial factor for a successful lander deployment. For
example profiling landers land on the bottom with their electrodes positioned above the sediment-
water interface, and then the electrodes are lowered into the sediment to measure the profiles.

Any lander will to some extent (depending on speed and form) disturb the area where it lands,
and for chamber landers it is particularly important to minimise this disturbance. Two different
techniques have been developed for chamberimplantation (Table 3). The firstis to fixeach chamber
under the frame with its lid open so that it is inserted directly into the sediment as the lander arrives
on the bottom. This ensures the chamber is inserted into the sediment ahead of the bow-wave.
Screens mounted around the chamber limit contamination with suspended sediment before the lid
is closed. This technique has been used on MANOP, BECI, ELINOR and BIOSTABLE. The main
technical problem is ensuring the descent rate is correct so that the depth of penetration is right,
and this is dependent on the softness of the local sediment.

The alternative technique, which has been used on all other chamber landers, is to lower the
chambers into the sediment after landing, either individually/mounted on a frame in a damped/
undamped way, or by using a motor to push gently them into the sediment. Corers using damped
systems are recognised as causing the least disturbances (BLOMQVIST, 1991; BETT, VANREUSEL,
VINCX, SOLTWEDEL, PFANNKUCHE, LAMBSHEAD, GOODAY, FERRERO and DINET, 1994).
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Chamber implantation after landing gives a controlled and reproducible chamber penetration
depth and is less reliant on the landing angle being correct, as in those systems using the direct
chamber implantation technique. However, if the bottom currents are either weak or nonexistent,
sediment resuspended by the landing may contaminate the measurement site.

Implantation can be triggered by means of a timer controlled burn-wire, an acoustic release
command from the surface, or by a dissolving magnesium link/bolt. The use of an independent
acoustic release isrelatively expensive compared to the other techniques and no more accurate time
wise than the burmn-wire method, although acoustic releases with two release channels are available
which enable one channel to trigger the chambers and the other can be used to release the ballast
weights. The use of a magnesium dissolving link is “safe”, but the dissolving time is so imprecise
that release times can vary by several hours.

6. BOTTOM DEPLOYMENT

6.1. Profiling landers

All the landers that profile across the sediment-water interface with mini- or micro-electrodes
are based on the principle developed for the REIMERS profiler. These measurements require that
any disturbance to the sediment-water interface and the overlying water is minimised or preferably
eliminated. Electrode design is inevitably a compromise between using a minielectrode which is
larger and more robust but causes more physical and hydrodynamic disturbances when penetrating
the sediment, or a microelectrode which is more fragile but causes less disturbance. While
hydrodynamic disturbances are a function of the size of the electrodes they are also influenced by
the design of any lander parts that either come in contact with or arrive close to the sediment-water
interface. A reduction of the diffusive boundary layer thickness by 25-45% has been noticed as a
result from inserting microelectrodes with diameters of Sum into sediments (GLUD, GUNDERSEN,
REVSBECH and JORGENSEN, 1994). There are some micro- and mini-electrodes which are
commercially available, but most profiling lander constructors prefer to make their own electrodes
(e.g. REVSBECH, JORGENSEN and BLACKBURN, 1980a; REVSBECH, SORENSEN, BLACKBURN and
LOMHOLT, 1980b; REVSBECH, 1989; HELDER and BAKKER, 1985).

All profiling instruments are capable of measuring oxygen profiles and some (REIMERS
profiler, UW profiler, PROFILUREN and BOTTY) are also fitted with pH electrodes. It is essential
to know the precise position of the electrode relative to the sediment interface and this is achieved
using resistivity probes (ANDREWS and BENNETT, 1981) on the REIMERS profiler, UW profiler,
TROL and BOTTY. Microelectrodes have been developed for measuring pCO, and have been used
successfully for the firsttime in-situ on the REIMERS profiler (CAland REIMERS, 1993). Fibre optic
pCO, minisensors have also been successfully used in the deep ocean on the UW profiler
(EMERSON, ARCHER and HALES, personal communication). Sulphide microsensors have been used
on PROFILUREN (GUNDERSEN, JORGENSEN, LARSEN and JANNASCH, 1992) and on the
REIMERS profiler. Microsensors for temperature have also been mounted on profilers including
PROFILUREN and BOTTY. Electrodes for NO,™ and N, O have been used mainly in freshwater
sediments (CHRISTENSEN, NIELSEN, S@RENSEN and REVSBECH, 1990; NIELSEN, CHRISTENSEN,
REVSBECH and SORENSEN, 1990), but have recently been developed for the marine environment.

Profiling landers use a motor to push the electrodes stepwise into the sediment, while they are
measuring. The depth resolution depends partly on the size of these steps, but is mainly limited by
the outer diameter of the electrode’s tip; this varies from 0.025 to 1 mm for the different profiling
instruments (Table 4).
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6.2. Chamber landers: chamber design, surface area and number of chambers

In situ experiments are carried out within the enclosed environment of the chamber, and fluxes
are estimated either by direct measurements of the water chemistry or by sampling it. Many landers
also sample and retrieve the sediment incubated up to the surface. The number of chambers on a
lander range from 1-4, and the surface area enclosed by a chamber varies from 177cm? for the
BANYULS and GOTEBORG landers, up to 3850cm? for the IDRONAUT/CISE chamber. Using
achamber with a larger surface area reduces the variability caused by the fine-scale heterogeneity
of bottom sediments so evident in many sea-bed photographs (e.g. RICE, THURSTON and BETT,
1994). This scientific advantage may be offset by greater space requirement and the additional
power needed to close sediment recovering scoops. The use of multiple chambers on a lander not
only gives a better idea of the variability at each site but also enables controlled manipulative
experiments to be carried out, or can be an insurance against the failure of one of the chambers.

Three different chamber shapes have so far been used (Table 5), square (box core type), squared
with rounded comers and cylindrical. The shape selected is often determined by the technique used
to retrieve the sediment. Another important factor in selecting a particular chamber shape are the
hydrodynamics involved in stirring the overlying water. Some modellers claim that the hydrody-
namics are easier to model ina cylindrical chamber (BROSTROM, 1995), while others prefer a square
chamber withrounded corners, because, itis claimed, that the circulation of waterin such achamber
more closely resembles in-situ conditions than in other chamber shapes (GLUD, GUNDERSEN,
JORGENSEN, REVSBECH and HUETTEL, 1995). In the square chamber of BFSD, triangular blocks
of polycarbonate are used to fill the corners to prevent stagnation.

The water movement inside the chamber is dependent on the stirring mechanism used and the
precise location of the stirrer (BUCHHOLTZ-TEN BRINK, GUST and CHAVIS, 1989). The location of
any sensors within the chamber will also alter the hydrodynamic conditions and so may influence
the measurements. Estimations of hydrodynamics and direct in-situ measurements of boundary
layer thicknesses in chambers have been made with microelectrodes (e.g. oxygen) (GLUD,
GUNDERSEN, JORGENSEN, REVSBECH and HUETTEL, 1995), skin friction probes (GUST, 1988), by
alabaster dissolution (SANTSCHI, BOWER, NYFFELER, AZEVEDO and BROECKER, 1983; OPDYKE,
GUST and LEDWELL, 1987) and by radiotracer uptake by the seabed (SANTSCHI, NYFFELER,
O’HARA, BUCHHOLTZ and BROECKER, 1984; HALL, ANDERSON, RUTGERS VAN DER LOEFF,
SUNDBY and WESTERLUND, 1989). But before it is possible to recommend an optimal chamber
design, further studies and intercalibrations between different chamber designs are needed .
However, where a diffusive boundary layer does not limit sediment-water exchange rates, it is
probably less critical that the water movements inside chambers resemble those normally taking
place in-situ. (see also 6.4. Chamber stirring).

6.3. Chamber materials and lid closing

Stainless steel, titanium and aluminium have been used as materials for constructing the
chambers (Table 5). Metals have the advantage of being stronger than most plastic materials. There
is one report that stainless steel interferes with the oxygen consumption inside the chamber
(CRAMER, 1989), but this problem should be relatively easy to overcome with the use of an inert
coating, as used for both the chambers made out of titanium (i.e. ELINOR and BIOSTABLE), the
aluminium chambers on the HINGA lander and stainless steel chambers on the DEVOL lander. A
disadvantage of metals is that if the sediment measured is recovered, the sample can not be visually
inspected to estimate roughly the sediment disturbance or see some of the important sediment
characteristics such as signs of biological activity (burrows and lebenspurren), any layering of the
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sediment, or the presence of phytodetritus (LAMPITT, 1985). Plastic materials such as Polycarbonate
(Lexan®), PVC and Polymethacrylate (Plexiglass) are often used in the construction of cylindrical
chambers (Table 5). Polycarbonate is the least brittle and so is probably the most suitable for a
chamber applications. Plastic chambers are lighter and generally less expensive than metal
chambers, but they have to have thicker walls because they have lower mechanical strength and are
more gas permeable. Thicker chamber walls cause more disturbance when penetrating the
sediment, but this can be alleviated by sharpening the edges.

The possibility of using other materials such as glass and composites was investigated prior to
the construction of the BANYULS lander, but proved to be unsuitable as alternatives. Composite
materials were not considered for the same reasons as explained above (cf. Material choices for
lander frames), while contacts with French glass manufacturers (e.g. Saint-Gobain Vitrage, Paris)
showed that the mechanical properties of glass, notably shock resistance were poorer than for the
other materials.

Itis necessary to ensure that there is no chemical exchange between the chamber walls and the
water they enclose. Any substances leaching out of the chamber walls may either contaminate the
fluxes or interfere with the chemical measurements. Prior to deployment chambers must be
thoroughly cleaned (with e.g. diluted acid and distilled water) and then soaked either in ambient
sea-water (if possible) or distilled water for a couple of days before use. The chamber must be
protected from contamination on deck and, if possible, by the sea-surface film. Such care is of
special importance when investigating solutes which occur in very low concentrations, such as
trace metals and various dissolved organic compounds. “Blank” chamber deployments, i.e.
deployments of chambers onan inert surface (e.g. a sheet of plastics) instead of the sediment surface
can be made as controls to provide information on the extent of chemical desorptive/adsorptive
interactions between the walls and the water that has been retained. Such exercises are also
recommended when it is important to distinguish between processes in the water phase and in the
sediment (see 6.6. Water sampling for further discussions of contamination problems).

As the chamber penetrates the sediment, water must be allowed to escape easily. Any excess
of pressure will: (a) disturb the sediment, (b) hinder chamber penetration, and (c) generate a
hydraulic pressure wave in the pore water down into the sediment. If water is free to flush through
the chambers during the descent and during sediment penetration it helps to thoroughly rinse the
chamber and ensures that the ambient bottom water contained within the chamber is uncontami-
nated with water from the higher levels in the water column. The majority of chamber landers are
equipped with an upper lid. The two that do not have lids (FVR and the HINGA chamber) were
notdesigned to recover sediment, and use one-way check/purge valves to let the water escape. Lid
designsvary according to the associated equipment (number of electrodes, stirring mechanism and
number of water samples taken).

Itisessential thatthe lid seals tightly, and thisis achieved variously by the use of weights, springs,
magnetic or hydraulic sealing. Verification that the lid has sealed can be made by injecting a tracer
that can also provide a measurement of the volume of water in the chamber. Tracers that have been
used include NaBr for ROLAI’D, BECI and ELINOR; RbBr for EAWAG; CsCl for USC and 2Na
for the MANOP lander (SANTSCHI, NYFFELER, O’HARA, BUCHHOLTZ and BROECKER, 1984).

6.4. Chamber stirring

Some chemical gradients are established across the sediment-water interface under natural
conditions, but once enclosed in achamber, abnormally steep gradients soon develop. To maintain
hydrodynamic conditions as natural as possible, all chamber landers are equipped with stirrers
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(Table 5). The simplest stirrer, which also has the advantage of consuming no energy, is the
Savonius rotor used on the HINGA lander. This stirrer consists of a paddle wheel on top of the
chamber which is rotated by the ambient water currents at the deployment site, and runs a Teflon
coated stirring bar inside the chamber. However, this solution relies on the bottom currents not
being disrupted by the lander frame. In most lander designs a small DC motor is used to rotate a
magnet inside a water tight motor housing. The “motor magnet” is magnetically coupled to a
magnetic stirrer inside the chamber. A magnetic coupling not only avoids the need for a mechanical
coupling but also protects the stirring motor from excessive stress if the stirrer in the chamber is
jammed. The motor is housed in either a liquid pressure compensated (often plastic) or an air filled
(often stainless steel) pressure housing. Liquid compensation islessdemanding in space (depending
on motor size), but requires the use of an appropriate liquid for pressure compensation. Fluorinert
FC-40 (from 3M company) was used successfully on ROLAI’D and fluorinert FC-77 (from the 3M
company) on MANOP, BECI and ELINOR. Some types of oil, such as pure paraffin, caused
corrosion problems on stirring motors on the BANYULS lander, which led to the use of an air filled
stainless steel pressure case. Pressure compensation is achieved by connecting a collapsible volume
compensator to the motor housing.

Other stirring mechanisms thathave been used include electromagnetic stirrers (stepper motors)
with magnetic coupling to a stirring bar, and circulation pumps (Table 5). By conducting electric
power in a stepwise manner through a number (at least three) of electromagnets placed in a “circle”
in the motor house, the stepper motor will rotate a magnetic stirring bar in the chamber. Stepper
motors have proved reliable, energy efficient and relatively maintenance free on MANOP, FVGR,
ROLAPD and BECI and have the advantage of not having moving parts, which can be of
importance when either using a liquid pressure compensation system or if embedding the motor
in epoxy resin (SMITH and BALDWIN, 1983). Chamber stirring can also be accomplish by
continuously circulating water via a pump (GOMEX, MANOP and BFSD), but requires signifi-
cantly more energy to perform reliably and so limits deployment duration.

Since stirring is normally maintained during the entire duration of a deployment, it usually has
the highest energy demand of all the associated operations. The judicious choice of a stirrer can,
therefore, be a crucial factor for the success of long chamber deployments.

Efforts have been put into controlling the stirring of chambers to minimise pressure differences
along the sediment surface in the chamber (e.g. GUST, 1990; GLUD, GUNDERSEN, J&JRGENSEN,
REVSBECH and HUETTEL, 1995). Pressure gradients inside the chamber are believed to affect flux
measurements in permeable sediments (e.g. sandy sediments and sediments with many animal
burrows) by “importing/exporting” solutes via the sediment between the inside and outside of the
chamber (HUETTEL and GUST, 1992). This minor problem can be overcome by a deeper chamber
penetration. Another potential artefact in permeable sediments results from partial pressure
gradients, in that convective transport of pore water can take place between the periphery and the
centre of a chamber (GLUD, GUNDERSEN, JJRGENSEN, REVSBECH and HUETTEL, 1995).

6.5. Microprocessors and lander electronics

Chamber stirring, water sampling and measurements must all be controlled, monitored and
recorded electronically. The choice of controller varies greatly from lander to lander depending on
the design requirements. Enormous advances have been made in electronics during the past 20-30
years and so the pioneer landers such as FVR and FVGR-1 used quite primitive electronics.

While designers may still opt to develop their own systems depending on personal knowledge
and experience in electronics, a wide range of microprocessors are now commercially available
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which are suitable for lander applications (small, good capacity, easy to program and low energy
consumption). The commercial models of different microprocessors presently used inchamberand
profiling landers are listed in Table 4 and 5, but new systems are continually becoming available.
Most of these include a timer and only demand an interface card to transmit the signals from
the microprocessor to the different peripherals (stirring motor(s), burn-wires, solenoids,
electrodes etc.).

It is essential to protect the electronics against sea-water and so they have to be housed in
pressure-cases (Table 4 and 5), usually of aluminium, stainless steel or titanium. Commercially
available spherical glass housings have also been used to protect electronic equipment, and the use
of ceramics is a possibility in future (STACHIW, JOHNSON and KURKCHUBASCHE, 1993). These
pressure-cases are equipped with pressure resistant bulk-head connectors and cables to link the
electronics with the peripherals. Although pressure cases with or without cables and connectors
are commercially available, many constructors still prefer to make their own custom-build cases
which they then fit with commercial connectors.

There are a number of different connector and cable manufacturers, and the exact types chosen
is not very important (as long as the connectors and cables stand up to given specifications) except
when the connectors are used for signal transmission from electrodes. In this case, especially when
using mini- or microelectrodes, it is essential to choose a cable with a high insulation resistance (R
over 10'2 Ohm) under high hydrostatic pressure. If the insulation does not have high enough
resistance the signal will be partially or completely lost.

A survey of prices of the different connectors and pressure cases available commercially was
made while designing the BANYULS lander and revealed variations of up to a factor of ten for
virtually the same material.

6.6. Water sampling

During their deployments, all chamber landers collect water samples from the chamber at
preprogrammed times. Once these samples have been brought to the surface, they are analysed for
various chemical components such as alkalinity, XCO,, nutrients, DOC, aminoacids, metals,
oxygen etc. During extended deployments (i.e. longer than three to five days), or if analysing
dissolved gases (e.g. oxygen) the water samples need to be poisoned (e.g. mercury solution on
RAP-2) to stop bacterial development. If dissolved gases are to be analysed, the samples must be
drawn into glass samplers rather than into sampler container made of gas permeable plastics.

The simplest, and most widely used method of drawing water samples is by using spring- or
weight-loaded syringes. The syringes are held cocked and triggered by a range of mechanisms
including:- (a) atimer controlled corrosive link (bum-wire used by mostlanders), (b) solenoids (e.g.
FVR,ROLAPPD, ELINOR and BIOSTABLE), (c) atimer- or microprocessor-controlled DC motor
(BECI), (d) by stepper motor of the same type as used on a Rosette water sampler (e.g. BOLAS).
The burn-wire technique is simple and well tested. It requires an electrical power connection toeach
syringe and another (common to all syringes on marine landers) to a cathode, which “earths” the
current from the burn-wire to the water. The cathode must be electrically isolated from any metal
part of the lander. Plastic coated wire such as some fishing lines can be used as burn-wire. For
deployments in fresh water, each burn-wire needs to be placed in a short Plexiglass tubing filled
with saturated solution of NaCl, and sealed with rubber stoppers. A solenoid system requires two
wires (positive and negative). The solenoid triggering system is probably easier and faster to arm,
but demands more development and testing. It also needs to be pressure protected (liquid bath or
pressure case) before use which takes up more space. BECI employs two four-conductor wires to
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operate DC motors that can sample an indefinite number of syringes (current design employs 20).
After sampling itis important to prevent sample leakage during the rest of the deployment or during
recovery either by locking the syringes in the untriggered position, or by using pressure plates to
stop off the sampling lines (USC) or the use of one-way valves. Syringes used for water sampling
are easily modified to inject tracers into the chamber after contact with the sea-bed.

Stepper motor triggering systems seem to be reliable for operating syringes, butall syringes used
must be grouped around the pressure protected stepper motor.

Other water sampling systems that have been used include spring loaded bellows for collecting
large volume samples and vinyl bulbs on the USC landers. A sampling pump system was tried on
MANOP, but proved to be unreliable and so was replaced by spring loaded syringes. BOLAS uses
a “bottle” sampler within the chamber, which works with the same principle as a “Niskin bottle”
and collects a large (250 ml) water sample at the end of the deployment. The IDRONAUT/CISE
chamber contains a two channel peristaltic pump, one channel to collect the sample and the other
to supply replacement water. On BFSD which is used only to depths of 50m, an air-filled container
is filled by hydrostatic pressure with sample when a solenoid controlled valve opens a fill-line
between the chamber and the container.

Contamination of the samples must be avoided at all costs. If the sampling system consists of
plastic syringes connected by tubing to the chamber lid, then careful rinsing with distiled water
should be adequate. For more complex systems, more extensive cleaning will be necessary to avoid
contamination, which needs to be followed up with blank measurements and checks, especially for
the study of trace constituents. A thorough study of the potential contamination of water enclosed
by a chamber and the associated sampling system was carried out by BERELSON and HAMMOND
(1986). It was shown that Nylaflow® and Tygon® contaminate the water with silica and alter
hydrogen ions concentrations (pH), whereas Nylaflow® also promoted a precipitation of calcium
carbonate from the supersaturated water. It was also found that aluminium surface may absorb
silica. Plexiglass, nylon and latex, however, showed no significant contamination effects. In
general, any plastics used should be transparent since colouration is by pigments which often
contain additives that can result in contamination. Problems (and suggested solutions) with using
metals as chamber materials have been treated above (cf. 6.3. Chamber materials and lid closing).

There has to be compensation for the volume of water removed during sampling. In most cases
this occurs through diffusion barrier, an open tube between the chamber and the ambient bottom
water which is long enough to avoid diffusive exchange with the outside. Water enters through the
tube as the sample is drawn and knowing the volume of sample and the external concentrations of
solutes it is simple to model the quantitative effect of the replacement water. Some chamber landers
collect external reference water samples either with Niskin bottles or with syringes (Table 6).

To calculate the benthic solute fluxes from rate of change of solute concentrations within
chambers, the volume of water (or height of water column) enclosed by the chamber has to be
known precisely. Thisinformationcan be obtained in a variety of ways. If achamberlander retrieves
the incubated sediment intact, the water column height can be measured directly back on-board
ship. Some landers are equipped with a simple device thatonly can move one way and thatis pushed
upwards by the sediment as the chamber tray penetrates it (used on GOTEBORG lander as a back-
up system). The height to which it is displaced then corresponds to the water column height in the
chamber. Another method is to inject a precise amount of tracer into the chamber and its dilution
is used to estimate of the volume of water in the chamber (see discussion on tracers above in section
6.3. Chamber materials and lid closing). A camera mounted on the lander can be used to record
not only the height of the water column in the chamber (if using transparent chambers), but also
the degree of disturbance of the sediment caused both during landing and normally by macrofaunal
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activities. Itis still uncertain asto which method of determining chamber volume is the mostreliable,
and this deserves further study.

6.7. Pore water and sediment sampling

ROLAPD has two separate systems for in-situ pore water sampling, one suitable for “deeper”
pore water sampling (SAYLES, 1979) and a “whole core squeezer” (BENDER, MARTIN, HESS,
SAYLES, BALL and LAMBERT, 1987) for high resolution, vertical sampling of pore water near the
sediment-water interface. A module for high resolution (1 mm) pore water sampling using an
equilibration probe (gel “peeper’; KROM, DAVISON, ZHANG and DAVISON, 1994) is being
developed for the BANYULS- and GOTEBORG-landers, which will replace one of the four
chambers during deployments.

Chamber fluxes and pore water profiles of oxygen have been measured at the same site by
mounting the UW profiling instrument onto the DEVOL flux chamber tripod (ARCHER and DEVOL,
1992).

After deployment, most chamber landers retrieve the incubated sediment. This not only enables
visual inspection of the sediment, but also makes it feasible to continue biological or geochemical
experiments and analyses back onboard ship.

Different principles have been used to close off the bottom of the chambers on retrieval. One
is based on the “classical” sediment sampling techniques (box core type) where the closure is by
scoop(s) forced through the sediment either by springs (as on FVGR-2, IHF and DEVOL landers)
or by hydraulic cylinders pressurised at the surface (as on BECI, ELINOR and BIOSTABLE), or
by a motor (as on BOLAS) which collects separate sediment samples outside the chamber.

Another method (as used in the "multiple corer" type) relies on the sediment being held inside
the chambers by the suction created by the sealed upper lids, and protective scoops which close
once the chambers have pulled out of the sediment (BARNETT, WATSON and CONNELY, 1984). This
technigue, used on the BANYULS- and GOTEBORG-landers, has the advantage that it demands
less force and results in very little sediment disturbance (BLOMQVIST, 1991; BETT, VANREUSEL,
VINCX, SOLTWEDEL, PFANNKUCHE, LAMBSHEAD, GOODAY, FERRERO and DINET, 1994).

A third method is the so-called sphincter closing mechanism (BURKE, 1968), in which the
closure is made by rotating an “orange peel mechanism” (used on ROLAI’D). This technique has
seldom been used for sampling sediments, butis reported to be reliable and to resultin little sediment
disturbance (Table 6).

6.8. In-situ measurements with chamber landers

Mostchamber landers carry out one or more in-situ measurements. Most of these measurements
are made with standard electrodes (e.g. oxygen) modified to operate in the extreme conditions
(pressure, temperature, salinity, fouling, etc.) on the sea-bottom. There is now a wide range of
systems commercially available which are suitable for use on chamber landers. These electrodes
were developed essentially to be used for water column profiling and sampling (e.g. CTD
instruments). Parameters normally measured on landers are conductivity (salinity), temperature
and pressure (depth), and it should be relatively easy to add the measurement of bottom currents,
fluorescence and turbidity, since appropriate sensors are available for use on CTD’s. Sulphide and
pCO, microsensors have recently been used on profiling instruments (cf. 6. 1. Bottom deployment:
Profiling landers), and manganese sensors have been successfully used on deep-towed instruments
detecting hydrothermal vents.
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During long-term chamber deployments and/or in organic-rich sediments with high oxygen
consumption rates, the measurements of benthic solute fluxes may be affected by diminishing
oxygen concentrations in the chamber. To avoid such artefacts, a system to maintain the oxygen
concentration, as well as the pH, at the ambient level during chamber incubations was developed
by HALL (1984) and RUTGERS VAN DER LOEFF, ANDERSON, HALL, IVERFELDT, JOSEFSON,
SUNDBY and WESTERLUND (1984). A coil of Teflon tubing was used to let oxygen diffuse into the
water within the chamber and injections of 2.5 M NaOH maintained the pH. The oxygen system
had to be limited to deployments on continental margins (less than 2000 m depth), because regular
oxygen cylinders were used. Two chamber instruments have automatised this system for oxygen
(the IDRONAUT/CISE and the BFSD); the latter mainly intended for polluted sediments) and one
for pH (IDRONAUT/CISE).

An alternative way of estimating XCO, (instead of measuring it on discrete water samples at the
surface usinge.g. coulometry)is to measure pH (in-situ) and alkalinity (of collected water samples).
The use of pH electrodes have been successful during short term deployments on profiling landers
(e.g. REIMERS Profiler, UW Profiler, PROFILUREN, BOTTY,; see also section 6.1), but for
deployments longer than several hours at pressure equivalent to depths >200m, there are problems
particularly with the fast decomposition of the liquid/gelin the reference electrode of pH electrodes.
Recently the first successful deployments lasting 24-48 h at depths of 3800-4800m of a lander
carrying pH electrodes has been reported by BERELSON, HAMMOND, MCMANUS and KILGORE
(1994). Solid state pH sensors (VANDEN VLEHBERT and DEROOU, 1988) are being tested for such
long-term deployments under high pressure, at NIOZ in the Netherlands.

Most chamber and profiling landers use electrodes that were developed and tested by the
constructors or by their colleagues. The work of assembling, calibrating and maintaining a reliable
suite of probes is demanding in time and expertise. Commercially available electrodes and
dataloggers have now been adapted for use on several landers and should ameliorate some of these
technical and resource demands (c.f. Table 4 and Table 6 for details and makes).

Minielectrodes for oxygen have been used on chamber landers (e.g. ROLAF’D and ELINOR),
which have faster response times and consume less oxygen than the macroelectrodes. Since
minielectrodes take up less space in the chamber than macroelectrodes, they may offer advantages
which compensate for their greater fragility. However during chamber experiments concentration
changesare slow, so a fastresponse time is notessential. In large chambers the oxygen consumption
of the bigger electrodes is relatively insignificant, but can be calculated from the current running
in the probe. ROLAI’D, which has been used for relatively long deployments, has an in-situ
standardisation system to improve the precision of its oxygen electrodes.

Electrodes and the electronic instruments for the in-situ measurements usually constitute an
important part of a lander budget and are of crucial importance for successful deployment. Itis not
cost-effective in ship-time or research-time if the results are either lost or rendered unreliable by
faulty instruments. Mistakes and bad instrument selection can often be avoided by consulting with
experienced users of the electronics.

6.9. Other equipment

Some landers have video or still cameras mounted to survey the landing and the bottom
deployment. BOLAS has a camera inside the chamber to take photographs of animal movements
on the sediment surface. There are now several commercially-available pressure-protected camera
systems suitable for lander use. Their use tends to be of greatest interest, during the initial stages
of a deployment when the behaviour of the lander in waterand on its arrival at the sea-flooris poorly
known. |
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Some chamber landers are equipped with communication systems that relay back to the ship the
successful operation of all stages of the lander’s performance, its landing, chamber penetration, lid
closure and lift-off. The simplest system is to release floats at particular phases of the operation to
signal their successful completion (e.g. DEVOL) but over deep water the floats may not be spotted.
Two landers, MANOP and ROLAPD, used direct communication with the surface during
deployment. Anacoustic link can not only monitor the successful functioning of the lander, but also
can be used toreprogram it from the surface. However, this link demands ship-time, may be difficult
to operate in bad weather and transfer capacity through acoustic signals is limited.

Acoustic communication systems are expensive and may be superfluous if the lander is to be
deployed only for a few days. They could be of importance for status checks during long-term
deployments. More important is that success of recovery at the surface is greatly improved if the
device is fitted with an acoustic beacon because the ship can be navigated to find the device using
the Doppler shift of the signal. Even in rough seas or thick mist the vessel can be manoeuvred to
within tens of meters of the beacon.

6.10. Electrical energy

For many of its functions, a lander requires energy (for stirring, solenoids, burn-wires,
electrodes, stepper motors, cameras etc.). The longer the deployment, the greater the energy
storage capacity is needed, which for chamber landers mostly used for stirring, so designs and
components need to minimise energy consumption.

The energy can be supplied by different types of batteries. Lithium type batteries are not
rechargeable, but combine high capacity with small size. The nickel-cadmium batteries are
generally rechargeable and can give high currents, but they have a tendency to discharge at zero
current and so they are unsuitable for long-term deployments. The batteries most widely used on
landers are oil pressure compensated lead-acid (car type) batteries. While these are heavy and take
up a lot of space, they have a high capacity (70-80 Ah for 12 V) and rechargeable, so in the long
run they are relatively inexpensive.

When calculating requirements for energy capacity, a very important aspect to take into
consideration is that at cold temperatures most batteries loose up to half of their nominal capacity.
Detailed information on the behaviour of each specific type of battery is normally available from
the manufacturer.

Some constructors recommend splitting up the power supplies into several independent units
and keeping high current (e.g. for camera flash) and stable voltage supplies (e.g. for timers)
separated. Security systems (acoustic releases, pingers, VHF surface radios, ARGOS satellite
locateable transmitters, surface flashes, etc.), and computer memories for data storage and
programming normally have their own individual energy supplies (Table 4 and 6).

7. ASCENT AND RECOVERY

There are several examples of landers that have been lost either because they were stuck in the
sediment, trawled away by fishermen or lost for other unknown reasons.

All autonomous profiling and chamber landers use flotation (foam or glass spheres) to lift off
the sea-bed and return to the surface after release of descent weights (cf. Descent and landing).
Glass spheres have been used on most landers because of their relatively low cost. Although
guarantied to full ocean depth, an early version of IHF is thought to have been lost as a result of
implosion of glass spheres. The shock-wave from the implosion of one sphere can trigger others
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and so destroy whole rigs. All spheres should be pressure tested prior to use and any glass spheres
that show signs of internal flaking should be discarded. Note also that the operators of French and
American manned submersibles refuse to operate anywhere near instruments equipped with glass
float spheres because of the risk of implosion. Syntactic foam is more expensive than glass spheres,
but cannot implode, moreover it can be made into a custom designed shape. The downside with
syntactic foam is that although it generally takes up less total volume than a glass float package,
the weight in air for foams depth-rated to 6000m can be more than double that of glass buoyancy.
However, for working at shallower depths (< 2000 m), the foams do not suffer from this
disadvantage.

Alternative buoyancy under development are titanium spheres and low density thixotrophic
liquids (Balmoral, UK).

There are principal methods of attaching buoyancy. It can be attached directly to the top of the
frame (used by all but two landers), or by a cable or a rope. The former method makes for a bigger
and heavier instrument. The latter solution, used on USC, may make the lander more susceptible
to strong bottom currents, but makes it easier to grapple and handie during recovery, especially
in bad sea conditions. The HINGA lander has been used at the base of a mooring with a string of
other instruments and the float package mounted above it.

The need for excess of float capacity after ballast release is an important consideration. If too
little buoyancy is used the lander may fail to pull out of the bottom, so that it is either lost or has
to be recovered by dredging; as occurred during the first trials with TROL and BOLAS. These two
landers originally had about 25kg excess buoyancy which proved to be insufficient, so extra float
spheres had to be added. The float capacity needed is a compromise between providing enough
buoyancy to pull a lander out of a sticky sediment, and keeping the requirement for ballast weight
as low as possible. If a chamber lander is designed to retrieve sediment it is not only subjected to
a greater sediment suction on pull-out, but is also heavier on its return. For the landers reviewed
herein, the buoyancy required after ballast release varies from 45-250 kg (Table 7).

The ballast weights are usually held in place by either a lever or toggle mechanism. The
mechanism is released either by an electro-mechanical drive (most commercial acoustic releases),
a corrosion of a burn-wire, dissolution of a link (e.g. Mg) or breakage of a link by an explosive
charge (K.L. SMITH time releases; IOS CR200 (PHILLIPS, 1980)). Serial or parallel redundant back-
up with more than one release can be provided using various ways of suspending the weights. Most
landers have two independent systems for ballast release. Acoustically-controlled releases are
handy but expensive, their advantage is that using a system controlled from the surface, the time
of recovery can be chosen to provide the most appropriate conditions (weather and time). Most
acoustic releases produce precision time “pings” which can be used to estimate the distance to the
lander and the direction the ship needs to be tuned to lessen the distance. The acoustic source will
indicate the ascent has started and gives the ascent rate so that it can be estimated where and when
it will reach the surface. Reception of acoustic sources can be problematic where there is strong
temperature stratification or the bottom topography is exceedingly rugged, but most modern
systems have horizontal ranges of up to 15 km and operate to depths of at least 6 km. However,
difficulties have been encountered in positioning BOTTY and other instruments at depths >3000m,
and acoustic release systems are not 100% reliable. Other release systems used on landers are
microprocessor controlled burn-wires and dissolving magnesium links. The burn-wire solution is
a less expensive alternative to the acoustic release, but once programmed, the weight release time
can not be changed. A dissolving magnesium links are reliable but imprecise in timing, and should
not be used for deployments longer than about three days.

Once it has surfaced, it is important to spot and recover the lander as fast as possible, not only
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because the samples need to be processed and the rig prepared for a new deployment, but also to
ensure the lander does not drift out of the search zone demanding extra ship time. It is surprisingly
difficult to sight an object at the surface at a range of akilometre in even quite calm wave and swell
conditions. The more detection aids that are fitted the better; these can include flashing lights, an
antenna fitted with a flag, a radar reflector, an acoustic beacon, a VHF direction finder and an
“ARGOS” satellite transmitter. Once again all these systems should have independent power
sources capable of running the device for at least 12 hours.

Shortdistance spotting can be made with a VHFradio transmitter on the lander and a directional
receiver on the ship.

For long distance positioning (world covering), an ARGOS (CLS, Toulouse, France and
NACLS, Landover, MD, USA) satellite transmitter can be used (Table 7). A satellite positioning
system has the advantage of giving the position whenever, and wherever, the equipment reaches
the surface. A lander that is trawled away or was stuck in the sediment and comes up a month later
than expected will be spotted by the satellite positioning system, and can be recovered. All the above
described surface spotting systems are available commercially.

The greatest risk of damage to the lander (and human handlers) occur during launching and
recovery. Itis very important to prevent the lander from swinging and bouncing while hanging from
a crane or A-frame. A successful launch and recovery avoiding damage to the lander is more a
question of the skill of the ship crew and the sea state than of lander design. Some landers have been
lost or damaged during recovery because of lack of communication between people working on
deck and onthe bridge, e.g. by having propellers running when they should not. One way to facilitate
the recovery is to have separate floats, one ca.2m from the instrument and the other(s) at the end
of aline, attached to the instrument, and if this line is atleast 30m long, itis normally easier to grapple
than the landeritself. The floats will spread out down-wind of the lander. The ship can then approach
the gear up-wind and parallel to the line, so thatit can be easily grappled from a safe distance. Once
the line is hooked and secured on a winch, the instrument can be pulled closer and taken on-board
with propellers stopped and the ship drifting with the wind away from the lander. Another recovery
methodis to attach a line to the gear from a rubber boat (used on R/V Polarstern), but this technique
is more restricted to good weather conditions. None of these landers floats with much above the
water surface. Attaching alifting wire from a shipis made easierif the frame is fitted with a big lifting
ring.

When lifting the instrument onboard it is important to take account of the considerable dynamic
stress on the lifting line that can result from the movement of the vessel in the swell. Lines and ropes
used in the marine environment are worn out with time and through usage (e.g. by chafing, and sun
bleaching). Some brands of rope (e.g Keviar and Spectra) are exceedingly strong when new but
can loose their mechanical properties, often without showing any clear signs of their weakened
condition, through mechanical mis-use, for example by being bending under strain through sharp
angles. If accidents and losses are to be avoided then we recommend that wire >14mm diameter
are used in preference to ropes for landers weighing up to 2000kg.

8. PERSPECTIVES AND REMAINING TASKS

During the “European benthic lander research and technology workshop” (Bremen, Nov. 1993)
the utility of landers versus other techniques such as the benthic laboratories being planned in USA,
Japan and Europe (see e.g. THIEL, KIRSTEIN, LUTH, LUTH, LUTHER, MEYER-REIL, PFANNKUCHE
and WEYDERT, 1994) were discussed. The conclusions reached were as follows:-

In-situ studies on the sea-floor involve advanced deep-sea technology which is still in an early
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stage of development and is often at the cutting-edge of technological advance. Most research
groups developing and deploying benthic landers have the capacity to operate only one or a few
instruments, even so the results obtained from successful deployments of landers continue to
provide an important and unique insights into the deep-sea environment and benthic processes. It
is, therefore, of major concern that the future initiatives on benthic in-situ technology should be
based on a realistic and progressive development of the current and novel technical developments.
The research strategy adopted should derive from defined questions and goals of marine research,
rather than being determined by the technological challenge.

The waiting time of a research vessel on station during a deployment is now amajor component
of the research costs and can be minimised by effective design both in terms of science that can be
achieved and the cost effectiveness of ship-operations. So cruises should be coordinated whereby
multiple deployments of landers can be pre-programmed. An alternative option is the construction
of landers with the ability to operate continuously or intermittently for long periods of time,
optimally for a month up to a year which do not require frequent servicing from a surface vessel.
Such long-term deployments are presently done routinely with hydrographic instruments. Benthic
instruments have, however, the disadvantage of gradually changing the benthic environment they
are observing and thus modifying the properties of processes being monitored. A “bottom crawler”,
lander able to move in between deployments, thereby continually exploring unaffected sea-floor,
has recently been constructed. This type of instrument requires more stable sensors, long-term
maintenance and calibration procedures. Repeated deployments of sensors and flux chambers
require a yet unresolved method to remove or avoid biological growth on sensor surfaces and
chamber walls. Also, the high capacity energy sources and lander vehicles capable of movement
require further technical development.

Among the motivations for future marine science is the need to reach a global understanding
of the processes controlling the chemistry of and element cycling in the ocean. A large database
of high quality in-situ benthic biogeochemical fluxes is required for this purpose. Such data are
obtained today by the use of benthic lander systems, but their capacity is still very limited (Table
8) and can not provide extensive time-series of key parameters. Novel ideas including advanced
technological developments are, therefore, needed to cope with the important questions in
oceanography. Some main demands are:

- Long term deployment capability (6-12 months) with frequent observations which requires
sufficient power supply and data storage capacity;

- Monitoring of long term variations (decades) in areas of key interest for global change
aspects;

- Long term monitoring of sites influenced by human activities, e.g. deep-sea waste dumping
or mining;

- Interactive process studies involving a benthic station which can recognise defined events ,
e.g. a sedimentation puise, and then activate measurements and sampling;

- Time-series of samples at varying frequencies with in-situ preservation;

- Data transmission to sea surface and via satellite to shore-based institutes;

- Equipment for active site selection, manipulation and experimentation, e.g. by video or by
imaging fibre optic cables.

It is strongly recommended that these research objectives are approached by a stepwise construc-
tion of the benthic instrumentation required along several lines of development:
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TABLE 8. Benthic lander deployment areas.

Chamber/profiling Deployment areas

lander ’

1.FVR N.W. Adantic

Chamber

2. FVGR-1/FVGR-2 N. Pacific (e.g. San Diego Trough, Patton Escarpment);

Chamber N.W. Atlantic; Central N. Pacific

3. HINGA N. Atlantic (from the Equator to 38°N)

Chamber

4. MANOP E. Pacific; N. Pacific

Chamber

5. DEVOL Skan Bay (Alaska); Tres Marias depression and Mexican shelf and slope off
Chamber Mazatlan; Santa Catalina Basin; Washington continental shelf and siope

6. EAWAG Chamber Lakes of Luzern, Sempach, Zug, Baldegg and Alpnach in

(Lake instrument) Switzerland

7.USC Central and southern California Margin (shelf, slope and rise);

Chamber Central and Eastern Equatorial Pacific

8. GOMEX Gulf of Mexico; E. Greenland shelf; Conception Bay (E. Canada); MidAtantic
Chamber Bight off E. USA.

9. ROLAP’D Bermuda (Atlantic time series)

Chamber

10. BECI St. Monica basin; California borderland; Peru Margin; Cape Hatteras region
Chamber (N.W. Atlantic); W. Equatorial Pacific; N.E. Atlantic; W. Equatorial Atlantic
11. IHF N. of the Azores; E. Biscaye; around Madeira (all in the N. Atlantic)
Chamber

12. BOLAS N. Atlantic; Adriatic Sea and other Mediterranean sites:

Chamber Indian Ocean (off Kenya, Somalia, Oman)

13. BFSD Shelter Island Basin (San Diego); San Diego Bay; Sinclair Inlet (Washington State)
Chamber

14. ELINOR Skagerrak, Kattegat (N.E. North Sea); S. Atlantic (off Namibia); S. Atlantic (off
Chamber Brazil); upwelling areas off Chile; Limfjorden (DK); German Bight

14. RAP2 N.E. Atlantic; Equatorial Atlantic

Chamber

16. BANYULS N.E. Mediterranean

Chamber

18. GSTEBORG Skagerrak (N.E. North Sea); Gullmar Fjord (W. Sweden)

Chamber

19. IDRONAUT/CISE ~ Lagoon of Venice (I); Orta Lake (I); La Spezia Harbour (Ligurian Sea)
Chamber

20. BIO-C-FLUX S. Baltic Sea

Chamber

21. BIOSTABLE Arabian Sea

Chamber

22. REIMERS Santa Catalina Basin; San Clemente Basin; Patton Escarpment; Central California
Profiling Slope and rise; Santa Barbara Basin; Ceara Rise; Central N. Pacific; N.W. African slope
23. UW PROFILER Mexican continental shelf; Washington shelf and slope; Equatorial Atiantic;
Profiling N.W. Atlantic; W. Equatorial Atlantic; W. Equatorial Pacific; Ceara Rise

24. PROFILUREN Skagerrak, Kattegat (N.E. North Sea); S. Adantic; Bermuda; W. Pacific;
Profiling Bight of Aarhus (DK); Bight of California

25. TROL N.E. Atlantic; Adriatic Sea and other Mediterranean sites;

Profiling Indian Ocean (off Kenya, Somalia, Oman); OMEX program sites

26. BOTTY Southern Ocean in the polar front area; A dsen Sea; Bellingh Sea
Profiling

27. SAHAMI Profiler
Profiling

Coastal fjords and inlets of British Columbia (often in
polluted sediments around paper mills)
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1)  Non-targeted deployments and measurements on short time scales (hours to days) should be
performed by landers of relatively simple design and low cost.

2)  For long term observations (months) an abyssal station may be gradually built up which
combines more functions, sensors and experimental capacities and which allows interactive
operation via data transmission to the surface. A modular construction is important in which
experimental units may be designed by individual scientists and applied in the system. The system
must have internationally uniform components for power supply, connectors, data storage and data
transmission. The risk that the placement and presence of the instrument will affect the monitored
parameters and processes must be seriously considered.

3)  The problem of measurements and experimentation on selected sites should be approached
by the use of submersibles or benthic laboratories (i.e. on-line ROV-type systems) which can place
and operate equipment and conduct experiments with the aid of manipulators. ROV’s are also
useful for mapping physical and chemical parameters on the sea-floor on scales of 1-10°m. On a
larger scale of tens of km, an instrument may be required with the ability to move close to butabove
the sea-floor using remote sensing techniques which can land to carry out measurements and take
benthic samples.
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